Vous êtes ici

Development of anisotropy in incompressible magnetohydrodynamic turbulence

TitreDevelopment of anisotropy in incompressible magnetohydrodynamic turbulence
Type de publicationJournal Article
Year of Publication2008
AuteursBigot, B, Galtier, S, Politano, H
JournalPhysical Review EPhysical Review E
Volume78
Date PublishedDec
ISBN Number1539-3755
Numéro d'accèsWOS:000262240600049
Résumé

We present a set of three-dimensional direct numerical simulations of incompressible decaying magnetohydrodynamic turbulence in which we investigate the influence of an external uniform magnetic field B(0). A parametric study in terms of B(0) intensity is made where, in particular, we distinguish the shear-from the pseudo-Alfven waves dynamics. The initial kinetic and magnetic energies are equal with a negligible cross correlation. Both the temporal and spectral effects of B(0) are discussed. A subcritical balance is found between the Alfven and nonlinear times with both a global and a spectral definition. The nonlinear dynamics of strongly magnetized flows is characterized by a different k(perpendicular to) spectrum (where B(0) defines the parallel direction) if it is plotted at a fixed k(parallel to) (two-dimensional spectrum) or if it is integrated (averaged) over all k(parallel to) (one-dimensional spectrum). In the former case a much wider inertial range is found with a steep power law, closer to the wave turbulence prediction than the Kolmogorov one such as in the latter case. It is believed that the averaging effect may be a source of difficulty to detect the transition towards wave turbulence in natural plasmas. Another important result of this paper is the formation of filaments reported within current and vorticity sheets in strongly magnetized flows, which modifies our classical picture of dissipative sheets in conductive flows.

Equipes concernées: 
S'abonner à Syndiquer