Amplitudes and lifetimes of solar-like oscillations observed by CoRoT Red-giant versus main-sequence stars
Title | Amplitudes and lifetimes of solar-like oscillations observed by CoRoT Red-giant versus main-sequence stars |
Publication Type | Journal Article |
Year of Publication | 2011 |
Authors | Baudin, F, Barban, C, Belkacem, K, Hekker, S, Morel, T, Samadi, R, Benomar, O, Goupil, MJ, Carrier, F, Ballot, J, Deheuvels, S, De Ridder, J, Hatzes, AP, Kallinger, T, Weiss, WW |
Journal | Astronomy & Astrophysics |
Volume | 529 |
Date Published | May |
ISBN Number | 0004-6361 |
Accession Number | WOS:000289557200092 |
Abstract | Context. The advent of space-borne missions such as CoRoT or Kepler providing photometric data has brought new possibilities for asteroseismology across the H-R diagram. Solar-like oscillations are now observed in many stars, including red giants and main-sequence stars. Aims. Based on several hundred identified pulsating red giants, we aim to characterize their oscillation amplitudes and widths. These observables are compared with those of main-sequence stars in order to test trends and scaling laws for these parameters for main-sequence stars and red giants. Methods. An automated fitting procedure is used to analyze several hundred Fourier spectra. For each star, a modeled spectrum is fitted to the observed oscillation spectrum, and mode parameters are derived. Results. Amplitudes and widths of red-giant solar-like oscillations are estimated for several hundred modes of oscillation. Amplitudes are relatively high (several hundred ppm) and widths relatively small (very few tenths of a mu Hz). Conclusions. Widths measured in main-sequence stars show a different variation with the effective temperature from red giants. A single scaling law is derived for mode amplitudes of red giants and main-sequence stars versus their luminosity to mass ratio. However, our results suggest that two regimes may also be compatible with the observations. |